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3.3 ３準位レーザ



・気体レーザの場合，発振スペクトル線幅はドップラー効果による不均一広
がり（inhomogenious broadening)を持つ．

ドップラー効果の一般式

原子が の光を出しながら で走行しているとすると，静止観測者（実験系）w v

固体レーザの利得の飽和を理解するため，気体レーザの利得飽和から説明
する．

3.1 縦モードと利得飽和

原子が の光を出しながら で走行しているとすると，静止観測者（実験系）
からは，
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共振器のない気体増幅媒質の場合

進行波光電界

気体増幅媒質

共振周波数：
0

' 増幅された光電界
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・光増幅に寄与した原子集団の
領域で利得が減少する（利得
媒質に穴があく）．

・これをSpectral hole burning
という．



共振器中の場合

・定在波として光電界が
存在する（左右の進行
波の重ね合わせ）．

レーザ周波数
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・気体の速度分布上では，v=0を中心に
左右対称の速度位置でホールバーニ
ングが生じる



0' 0w w  0' 0w w 

0' 0w w 
では，左右のホー
ルバーニングが重
なり，一層強い飽
和を受け，出力が

出力特性に凹みが現れる(Lamb 
Dip)．

斜線の面積がレーザ出
力に寄与． 斜線が重畳した部分は

レーザ出力に寄与しない．

出力が急減
(Lamb dip) 5

減少する．これを
Lamb Dipという．



気体レーザの利得飽和

Saturated gain
profile（発振後）

Unsaturated gain profile
（不飽和利得曲線：発振前）

飽和による利得減少部分（斜線部）

Loss line
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c 光共振器の幅
610c Hz 

osc 発振線幅
理論値：
実験値： 410 Hz

410 Hz



Doppler幅

光共振器幅

レーザ出力幅

自然幅

レーザ利得および発振光のスペクトル

固体レーザの場合，固体レーザの場合，
周囲の原子の影響を
受け大きく広がる．



固体レーザの利得飽和
・固体レーザ利得スペクトルのプロファイルは，格子振動などに起因する均一
広がり幅を持つ

発振しきい値

共振器損失

Unsaturated gain
レーザ発振のない場合

均一な線の広がりがある場合の利得曲線(通常は，縦モード1本にまとまって
発振すると考えることができる)．

Saturated gain

共振器損失

縦モード番号

発振時

q-1 q q+1

0
利得競合の
結果発振せず

発振



・上述のように，固体レーザの利得の飽和の仕方を考えれば，基本的には，
利得中心近傍で単一周波数発振するはずである．

・しかし現実の，固体レーザでは，ストレート共振器（定在波型共振器）レーザの
場合，単一縦モードでは発振せず，マルチモード発振となる．

・その理由は，共振器内では，レーザ電界は定在波となっていて，空間的には
電界強度の節と腹ができている．それに対応した利得の空間的ホールバー
ニングが生じている．

・第q番目の縦モード発振による利得の空間的な穴（空間的ホールバーニング）・第q番目の縦モード発振による利得の空間的な穴（空間的ホールバーニング）
が発生し，その残存部分（定在波の腹）の利得を第q+1番目の縦モードが得る
ことができ，発振する．

・第q+2番目の縦モードでも同様なことが生じ，結果的に縦多モード発振となる．

・このことについては，下記文献に詳しい解説がなされている．

[3-1] A. E. Siegman; Lasers, University Science Books(1986) 466.
[3-2] 平等拓範 学位論文 p.29.
[3-3] 小林喬郎 編； 固体レーザー，学会出版センター(1997) 26.



・次ページ図は光電界の定在波に対するイメージ図，

・利得飽和は，光強度で考えるので，次ページ図の２乗した図で考えれば，
Siegman “LASERS”p.466 Fig.12.5と同様になる．

・お互いに逆方向に進行する光電界の重ね合わせは，次式となる．

［補足］ 定在波

( ) cos( t- ) cos( t+ )y t A x B x    

(cos t cos sin t sin )A kx kx   (cos t cos sin t sin )B kx kx  

( )cos t cosA B kx  ( )sin t sinA B kx 
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光電界の定在波に対するイメージ図
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1 2 30
の場合の定在波の様子1, 1A B  



3.2 利得係数と共振器内部損失計測法(Findlay-Clay法）

・レーザ発振条件は，レーザ共振器1往復における利得と全損失（共振器内部
損失+出力鏡の透過損失）とが一致することである．

4
2(1 ) (1 ) exp( 2( ) )wa t g la    

・上式の両辺の対数をとると，

2( ) 4ln(1 ) ln(1 )g l a ta     

(1-3)

・与えられたレーザ系で利得係数と共振器内部損失を実測する方法としてFindlay-Clay
の論文[3-4]がしばしば引用される．以下その解説を示す．

22( ) 4ln(1 ) ln(1 )wg l a ta     
ここで，右辺第2項に の近似を適用し，ln(1 )x x 

2(1 )t R  と置くと，上式は，次式のように書き換えられる．

2 2( 2 ) lnwgl l a Ra  

2( 2 )wl a aa  

資料ISLD1で，出力鏡による損失を除いた共振器一往復損失 は，次式
で与えられた．

a

(3-2)

(3-3)



ln 2R gl a  
・（3-3）を(3-2)に代入すると次式を得る．

(3-4)

・ここで，発振しきい値近傍を考えると，共振器内レーザパワーはほぼゼロで
あり，非常に小さな値と見なすことができる．

・一方，固体レーザの飽和を表す式は，前回説明したように，

で表されるので，しきい値近傍のレーザ利得係数 は，

[1/ ]
1 /

o

s

g
g cm

I I



gで表されるので，しきい値近傍のレーザ利得係数 は，
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ほぼ小信号利得係数 に等しいとしてよい．0g

(3-5)

・さらに， は，励起パワー に比例するとしてよいので，しきい値近傍
では，次式のように置くことができる．

0g inP

0 inthg l Px
しきい値近傍での励起パワー

(3-6)



・(3-6)を（3-4）に代入すると，次式を得る．

ln 2 inthR P ax   (3-7)

y Ax B
・すなわち，(3-7)は， を変数

に対応させると従属変数を

とした1次関数の方程式
と関係づけられる．

inthP x

lnR

・よって，複数個の異なった反射率を有

する出力鏡を用意し，与えられたレー

ザ励起系で各々の出力鏡で発振しきい

値パワーを実測すれば，グラフの傾き

と切片から，右図のように， と共振

器内部損失 を求めることが出来る．

これを，Findlay –Clay法[3-4]という．

[3-4] D. Findlay and R. A. Clay; Phys. Letters, vol. 20, No. 3 (1966) 277
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図3.3



・また，図3.3グラフの縦軸との交点によって が読み取れるので，これらの値

から，出力鏡の最適透過率 が, (1-9)           より得られ，

これを(1-10)，すなわち次式

・図3.3グラフの勾配によって，その系における がわかれば，（3-6）より，
特定の励起パワーにおける が得られる．
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に代入すれば，その系における最大出力を見積もることができる．

ただし，媒質の飽和光強度 と媒質内ビーム断面積 を知る必要があ
る．ビーム断面積は，用いる完全反射鏡と出力鏡の曲率半径に依存する．
これについては別途詳述する．

sI A



3.3 ３準位レーザ
・左図のように準位2，1間がレーザ遷移で，準位1
が基底状態または，励起状態であっても基底状
態に非常に近く，熱的に容易に結合している場合，
3準位レーザと言う．
・ルビーレーザはその代表例．
・そのレート方程式は，以下のように表せる．

3
13 1 31 31 32 3( )

dN
W N W A S N

dt
   

dN

(3-8)

2N

N

32S
3N

12W21W
13W 31W 31A

21A

2
12 1 21 21 2 32 3( )

dN
W N W A N S N

dt
   

1 2 3 0N N N N  

(3-10)

(3-9)

・ここで，Wは誘導遷移，Aは自然遷移，Sは無放射遷移，ただし，準位２→１，
３→１の無放射遷移，３→２の放射遷移は省略した．

1
31 31 3 21 21 2 12 13 1( ) ( ) ( )

dN
W A N W A N W W N

dt
     

(3-11)

1N



・次に， ， ，と置いて(3-8,9.10)を書き換えると，
次式を得る．

13 31 PW W W 2 1N N N  

3
1 3 32 3 31 3( )P

dN
W N N S N A N

dt
   

2
32 3 21 2L

dN
S N W N A N

dt
   

1
31 3 21 2 1 3( )P L

dN
A N A N W N N W N

dt
     

(3-12)

(3-14)

(3-13)

dt

・(3-12)で， と仮定すると， と見なせるので，32 31S A 31 3 0A N 

3
1 3 32 3( )P

dN
W N N S N

dt
   (3-15)

となる．さらに，強い励起状態では， と見なせるので，(3-15)より，
次式を得る．

3 0
dN

dt


1 3 32 3( )PW N N S N R  (Pumping Rate)          (3-16)



・以上の準備をした上で，以下， （反転分布）について考える．

・ は，基底状態なので， とみなしてよいので，次式が成り立つ．

・(3-16)を用いると，(3-13,14)は，次式のように書き換えられる．

2
21 2L

dN
R W N A N

dt
   

1
21 2 L

dN
R A N W N

dt
    

(3-17)

(3-18)

N

1N N N・ は，基底状態なので， とみなしてよいので，次式が成り立つ．1N 1 3N N

1 2 0N N N  (3-19)

・従って，次式(3-20,21)も成り立つ.

1 2 2 1 2 0( ) 2N N N N N N N     

(3-20)

1 2 2 1 1 0( ) 2N N N N N N N    

よって， 0
2 2

N N
N

 
同様に，



(3-21)よって，
0

1 2

N N
N



・定常状態では， なので，(3-17)より，0idN

dt


21 2 0LR W N A N   
上式に(3-20)を用いて， について解くと，次式を得る．N

21 0( / 2)

( / 2)

R A N
N

W A


 


(3-22)

21( / 2)LW A

・ となるためには， が必要．0N  21 0

2

A N
R 

・(3-16)より， であったので，(3-21)を用いると，1 3 32 3( )PW N N S N R 

(3-23)0 0
1 3 1

( )
( )

2 2P P P P

N N N
R W N N W N W W


    

・よって， を得る．0 21 0

2 2P

N A N
W 



・すなわち，次式が成り立つまで励起強度を強めれば，反転分布が達成され，
発振可能性がある．

21PW A

・実際，このような条件を満たす遷移を，固体分光学者であったT. Maiman
（W. E. Lamb Jr. の弟子)がルビーで見いだし，Xeフラッシュランプによる強励
起により，最初のレーザを発振，実現した．

(3-24)

・次回につづく


